A METHOD OF DETERMINING THE CRITICAL
TEMPERATURE FROM EXPERIMENTAL DATA
ON A ¢cg(T) BOUNDARY CURVE

V. V. Malyshev UDC 536.44

We present the basis of an analytical method for determining the critical temperature from
experimental data on a boundary curve in ¢, T~coordinates, We show that our method for
determining Tgpit is accurate to within 0.1%.

It is a known fact [1, 2] that the most accurate values of critical parameters are determined in spe-
cial experiments where the unknown quantities Terit, fepits Perit vary directly. Owing to the specific
peculiarities in the behavior of a material at a critical point, setting up such experiments is complicated
and does not always lead to the desired results. In our judgment, the problem of determining the critical
temperature can be solved analytically over a wide range of temperature variation by using experimental
data on a boundary curve in o, T-coordinates,

Data characterizing the boundary curve pg(T) are usually obtained in studies of the thermodynamic
properties of materials (P, p, T-data) by extrapolating either the isochore P(T) to the elastic curve Pg(T)
or the isotherm P(p) to the isobars Pg = const. In a region of temperatures far from the critical point the
isolines, in passing from a homogeneous to a heterogeneous region, show a well-defined break, the loca-
tion of which can be determined very accurately. The closer the approach to Terit the closer the angles
of inclination of the curves in the single and two-phase regions approach one another, leading thereby to
the appearance of an indeterminacy in the determination of the break location, The boundary curve, cen~-
structed from the experimental data, has thus the form of a truncated parabola, the position of whose
vertex, i.e., the critical parameters, cannot be determined graphically with sufficient accuracy. This
problem lends itself to an analytical treatment, the basis for which resides in the properties of the mate-
rial on the boundary curve in a neighborhood of the critical point.

A general form for the boundary curve pg(T) throughout the region in which liquid and vapor exist is
a rather complicated one. However, in a neighborhood of the critical point it turns out to be possible,
owing to the satisfaction of the well-known conditions (see, for example, [3, 4]) (8P/8 V)Tcrit = (8213/
aVZ)Tcrit =0; (O*P/3v¥)Topit < 0, to establish the form of the boundary curve. It was shown in [3,4] that
by expanding the state parameters in a Taylor series in the small increments verit — v, terit — t, Perit
— P the boundary curve must have the form of a symmetric second-degree parabola, i.e., vy — verit
= Vorit — VL ~ (Terit — T) 2 and vy — v, ~ (Terit — T)V/2, or, since we are dealing with small incre-
ments, we can write

oL — Py~ (Topir— 7). (1)
An analysis of experimental data for orthobaric densities for a number of nonconducting liquids
leads to the establishment of the one-third power law [5, 8] for the boundary curve instead of the law (1):
pL — oy~ (Terii— YA, (2)

Careful experimental investigations, made in recent years with a series of materials, show that the
best approximation to the experimental data for py and p1,, close to the critical point, is given by the
more general relationship
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Fig. 1. Plots of the quantities 6 o, (shown dashed) and
N, versus the parameter T, for eight materials.

oL —ov~ (Teri—T)8, ()

where the value for the critical exponent B is equal to 0.357 for CO, and 0.345 for Xe (see [5, 6]); 0.358
for heptane [7] and nitrogen [8], and 0.333 for SF, (see [9]), i.e., as before, 3 is close to 1/3, It should
be pointed out that only the differences of the orthobaric densities enter into the expressions (2) and (3),
thereby making it impossible to make a judgment concerning the symmetry of the boundary curve with
respect to the critical point [which contrasts with the expression (1)].

The form of the boundary curve in a neighborhood of T¢ypit can be established experimentally through
a study of the isochoric heat capacity Cy in passing from a heterogeneous region into a homogeneous one,
The value of the jump in the heat capacity in this transition, namely, ACy, can, as shown in [10], uniquely
determine the form of the boundary curve:

AC, ~lim (pcric—p) dp/dT, p—>Perir . )

In their investigations of the heat capacity some authors observed a finite value for the jump ACy
= 0 (see [10]), which corresponds to 2 value of the coefficient 3 in the expression (3) equal to 1/2; other
authors (see [5]) assume that ACy — = as T — Tgpit (8 < 1/2), and, finally, a third group of authors give
ACy =0 (B > 1/2, see [11]).

Thus, the question as to the form of the boundary curve in a neighborhood of the critical point has
as yet not been answered fully. However, unquestionably the following conditions characterizing the
continuity of the transition from a liquid to a gaseous state must be satisfied for the boundary curve for
Terit: '
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TABLE 1.
Various Materials

Calculated Values of the Critical Temperature for

Material l @ ! Terit £ 3Terit ATcrip (800/00) iy
Co, 0,56 305,140,7 0,9 6.5
H,O 0,47 647,3+0,6 0,0 6,5
Cly 0,40 417,002 —0,1 1’8
SF, 0.62 3184406 —0.3 7.6
C,l, 067 3687304 —1.3 2.9
150-CgHya 0,34 460'9%0'3 —0.1 5.6
His 0,46 508,270.3 0.3 4.3
CiHi, 0,46 500,603 0.3 2.9
C,Hyg 0,39 540,302 0,1 8,5
CiHys 0.86 569,04 1.2 —04 8’5
C,H, 0,92 3032519 —2'9 T
cti,0 0.75 513,010.6 —02 7,3
C,H,0, 0,51 523/3%0.3 0.0 3.2
Ll 0.86 3019411 0.0 6.9

1) the curve must pass through the critical point

O (0L )7 3= Ocrie? (52)
2) the curve must be of the form
oL =Py~ (Togye— TP, (5b)
where the value of the critical exponent g = 1/3;
3) at least the first derivatives of the density with respect to the temperature must be infinite:
(doy dT)r, = — (dpy fdT)7 o= oo, (5¢)

which corresponds to the condition of infinite compressibility of the material at the critical point.

Since the equilibrium densities are continuous functions of the temperature, they can be deseribed
with sufficient accuracy (within the limits of precision of the experiment) throughout the temperature inter-
val in question by power series of the form

m

oy= Ay + X A (T, —=T)mn, (6)
1

pp, =Co -+ 2 Con Ty —T)m/. (7)
1
In Egs. (6) and (7) the physical meaning of the coefficients Ajand C, is that of critical density,
while the quantity T,, treated henceforth as a parameter, has the significance of a critical temperature,
not as yet known accurately.

The choice of the form of the polynomials (6) and (7) is not a random one but is stipulated so as to
guarantee, on the one hand, the best approximation to the experimental data, and, on the other hand, to
satisfy the conditions (5) at the critical point. The latter is necessary, since the determination of Tppit
by our method amounts, in effect, to an extrapolation of the polynomials (6) and (7) to the critical tempera~
ture. The experimental data for the equilibrium densities are, in the general case, not necessarily ortho-
baric; therefore, in approximating them, we used independent equations. However, this does not contra-
dict the conditions (5), for whose satisfaction, besides the equality of the coefficients A; and C;, the ex-
ponent n must have the same value in both equations. In accordance with what was said above, we take the
value of n henceforth equal to three. According to the conditions (5) and the choice determined for the ap~
proximating polynomials (6) and (7), our method has made it possible, along with a determination of T¢rit,
to calculate the value of the critical density porit.

A special program was written for an electronic digital computer for the determination of the critieal
temperature in which the parameter T passed through a series of values with a step of size 6T, (usually,
6T, = 0.1°K), while the degree m of the polynomials varied from 1 to 14. Along with the coefficients A,
and C, (the coefficients Am and Cm were of no special concern to us) the program calculated, for each m,
the values of the dispersion of the polynomials (6) and (7). For each value of the parameter T, there was
thus obtained a series of values of the coefficients A, and Cy, constituting a function of degree m and
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determining, generally speaking, a critical density., According to [12], the unknown value of the critical
density p, (for given T) can be found by averaging the values of A, and C, on sections of stability, i.e.,

the dispersion constants of the polynomials (6) and (7). From the Ajand C, values corresponding to the
stability sections for the determination of p;, we selected only those which were included between the
experimental data for the vapor and the liquid, i.e., (6v)max <Ay Co < (0L)min. Thus, finally, to each
value of the parameter T, there correspond N, values of the coefficients Aj and N, values of the coefficients
Cy, which, treated jointly, yield a value of the desired density:

N, = Ny
Do = (Z (Ao)i + 2 (Co)j)/ N+ N,
1 1
and its error 6py, defined as the averaging error.

As a result of these calculations, we determined the dependence of the quantities oy, 60y, Ny + Ny
= N, on the parameter T;,, We found that the functions Ny(T) and 60,(Ty) have an extremal nature with
maximum and minimum values, respectively (see Fig. 1). On the contrary, the curve p(T) has a more
or less stable character (within the limits of the error 0py), a result, evidently, of the validity of the
rectilinear diameter rule. The smallest value of the error in the critical density, (60y)mjin, for a suffi-
ciently large number of points close to Nypax, must correspond, according to [12], to optimal values of
the critical temperature Tcrit and the critical density perit. In caleulating the errors in the value of the
critieal temperature, namely, 6Torit, we assumed that the boundaries of a possible variation in the value
of Tapit lie between the values of the parameter T closest to Tcpit, which correspond to one half the
height of the peaks of 60y(T,) or Ny(Ty).

Our method was tried out on 14 different materials for which experimental data are available for
the equilibrium densities over a wide range of temperatures and values of the critical parameters [13].
We illustrate the method by presenting in the figure the functions 654(Ty) and Ny(T,), obtained for eight
materials. The results of the calculations are shown in Table 1, In this table we give, for each material,
the value of @ = [(py, ~ pvV/ 1/z(PL + pyv)lmin characterizing the degree of constriction of the experimen—
critical temperature Terit and its error 6Tprit, and also the value of the deviation of our results from
those given in the literature (see [13]), namely, ATcrit = (Terit)eal — (Terit)lit, 2re given in °K. In the
last column we give the percent relative error in the determination of the critical density corresponding to
the minimum of the curve 6p4(T,).

It can be seen from the table that the value of the deviation AT qpit lies, for the majority of the mate-
rials, within the limits of the mean error 6Tcrit of the calculated Tcrit values, i.e., ATgpit < 6T erit,
which testifies to the reliability of the results calculated by our method. It is also evident that the magni-
tude of the absolute error 6Tcpit that is obtained depends strongly on the proximity w of the experimental
data to the critical point. Thus, our method for determining the critical temperature from the experimental
data on the boundary curve pg(T), for w less than 0.8 to 0.9, guarantees an accuracy in the calculations of
Terit 10 worse than 0.1%, and, at the same time, it enables us to determine the critical density to within
5%. A more accurate (apparently, to within 1%) value of the critical density can be had upon extrapolating
the rectilinear diameter to the already known value of the critical temperature.

We note, in conclusion, that the method we have descibed above was applied to determine the critical
temperature of hexafluorides of molybdenum, tungsten, and uranium from experimental data on the boun-
dary curve [14-16]. The values of Tyjt turned out to be equal to 485.2 +1.0; 452,7 + 0,7; and 504.5 + 1,0°K,
respectively, while the values of the critical density o¢pit, calculated according to the rectilinear diameter
rule, turned out to be 0.916 + 0,008; 1,28 + 0,015; and 1.38 + 0,012 g/cm?®, respectively.
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